Plan Recognition
Online Bayesian Goal Inference for Boundedly-Rational Planning Agents
Remarkably, we can do so even when those actions lead to failure, enabling us to assist others when we detect that they might not achieve their goals. How might we endow machines with similar capabilities? Here we present an architecture capable of inferring an agent's goals online from both optimal and non-optimal sequences of actions.
NatSGLD: A Dataset with Speech, Gesture, Logic, and Demonstration for Robot Learning in Natural Human-Robot Interaction
Shrestha, Snehesh, Zha, Yantian, Banagiri, Saketh, Gao, Ge, Aloimonos, Yiannis, Fermüller, Cornelia
Recent advances in multimodal Human-Robot Interaction (HRI) datasets emphasize the integration of speech and gestures, allowing robots to absorb explicit knowledge and tacit understanding. However, existing datasets primarily focus on elementary tasks like object pointing and pushing, limiting their applicability to complex domains. They prioritize simpler human command data but place less emphasis on training robots to correctly interpret tasks and respond appropriately. To address these gaps, we present the NatSGLD dataset, which was collected using a Wizard of Oz (WoZ) method, where participants interacted with a robot they believed to be autonomous. NatSGLD records humans' multimodal commands (speech and gestures), each paired with a demonstration trajectory and a Linear Temporal Logic (LTL) formula that provides a ground-truth interpretation of the commanded tasks. This dataset serves as a foundational resource for research at the intersection of HRI and machine learning. By providing multimodal inputs and detailed annotations, NatSGLD enables exploration in areas such as multimodal instruction following, plan recognition, and human-advisable reinforcement learning from demonstrations. We release the dataset and code under the MIT License at https://www.snehesh.com/natsgld/ to support future HRI research.
Implicit Coordination using Active Epistemic Inference
Bramblett, Lauren, Reasoner, Jonathan, Bezzo, Nicola
A Multi-robot system (MRS) provides significant advantages for intricate tasks such as environmental monitoring, underwater inspections, and space missions. However, addressing potential communication failures or the lack of communication infrastructure in these fields remains a challenge. A significant portion of MRS research presumes that the system can maintain communication with proximity constraints, but this approach does not solve situations where communication is either non-existent, unreliable, or poses a security risk. Some approaches tackle this issue using predictions about other robots while not communicating, but these methods generally only permit agents to utilize first-order reasoning, which involves reasoning based purely on their own observations. In contrast, to deal with this problem, our proposed framework utilizes Theory of Mind (ToM), employing higher-order reasoning by shifting a robot's perspective to reason about a belief of others observations. Our approach has two main phases: i) an efficient runtime plan adaptation using active inference to signal intentions and reason about a robot's own belief and the beliefs of others in the system, and ii) a hierarchical epistemic planning framework to iteratively reason about the current MRS mission state. The proposed framework outperforms greedy and first-order reasoning approaches and is validated using simulations and experiments with heterogeneous robotic systems.
Goal Recognition using Actor-Critic Optimization
Nageris, Ben, Meneguzzi, Felipe, Mirsky, Reuth
Goal Recognition aims to infer an agent's goal from a sequence of observations. Existing approaches often rely on manually engineered domains and discrete representations. Deep Recognition using Actor-Critic Optimization (DRACO) is a novel approach based on deep reinforcement learning that overcomes these limitations by providing two key contributions. First, it is the first goal recognition algorithm that learns a set of policy networks from unstructured data and uses them for inference. Second, DRACO introduces new metrics for assessing goal hypotheses through continuous policy representations. DRACO achieves state-of-the-art performance for goal recognition in discrete settings while not using the structured inputs used by existing approaches. Moreover, it outperforms these approaches in more challenging, continuous settings at substantially reduced costs in both computing and memory. Together, these results showcase the robustness of the new algorithm, bridging traditional goal recognition and deep reinforcement learning.
Towards Intention Recognition for Robotic Assistants Through Online POMDP Planning
Saborio, Juan Carlos, Hertzberg, Joachim
Intention recognition, or the ability to anticipate the actions of another agent, plays a vital role in the design and development of automated assistants that can support humans in their daily tasks. In particular, industrial settings pose interesting challenges that include potential distractions for a decision-maker as well as noisy or incomplete observations. In such a setting, a robotic assistant tasked with helping and supporting a human worker must interleave information gathering actions with proactive tasks of its own, an approach that has been referred to as active goal recognition. In this paper we describe a partially observable model for online intention recognition, show some preliminary experimental results and discuss some of the challenges present in this family of problems.
Data-Driven Goal Recognition Design for General Behavioral Agents
Kasumba, Robert, Yu, Guanghui, Ho, Chien-Ju, Keren, Sarah, Yeoh, William
Goal recognition design aims to make limited modifications to decision-making environments with the goal of making it easier to infer the goals of agents acting within those environments. Although various research efforts have been made in goal recognition design, existing approaches are computationally demanding and often assume that agents are (near-)optimal in their decision-making. To address these limitations, we introduce a data-driven approach to goal recognition design that can account for agents with general behavioral models. Following existing literature, we use worst-case distinctiveness($\textit{wcd}$) as a measure of the difficulty in inferring the goal of an agent in a decision-making environment. Our approach begins by training a machine learning model to predict the $\textit{wcd}$ for a given environment and the agent behavior model. We then propose a gradient-based optimization framework that accommodates various constraints to optimize decision-making environments for enhanced goal recognition. Through extensive simulations, we demonstrate that our approach outperforms existing methods in reducing $\textit{wcd}$ and enhancing runtime efficiency in conventional setup. Moreover, our approach also adapts to settings in which existing approaches do not apply, such as those involving flexible budget constraints, more complex environments, and suboptimal agent behavior. Finally, we have conducted human-subject experiments which confirm that our method can create environments that facilitate efficient goal recognition from real-world human decision-makers.
Explainable Human-AI Interaction: A Planning Perspective
Sreedharan, Sarath, Kulkarni, Anagha, Kambhampati, Subbarao
From its inception, AI has had a rather ambivalent relationship with humans -- swinging between their augmentation and replacement. Now, as AI technologies enter our everyday lives at an ever increasing pace, there is a greater need for AI systems to work synergistically with humans. One critical requirement for such synergistic human-AI interaction is that the AI systems be explainable to the humans in the loop. To do this effectively, AI agents need to go beyond planning with their own models of the world, and take into account the mental model of the human in the loop. Drawing from several years of research in our lab, we will discuss how the AI agent can use these mental models to either conform to human expectations, or change those expectations through explanatory communication. While the main focus of the book is on cooperative scenarios, we will point out how the same mental models can be used for obfuscation and deception. Although the book is primarily driven by our own research in these areas, in every chapter, we will provide ample connections to relevant research from other groups.
Mobile Sequencers
The article is an attempt to contribute to explorations of a common origin for language and planned-collaborative action. It gives `semantics of change' the central stage in the synthesis, from its history and recordkeeping to its development, its syntax, delivery and reception, including substratal aspects. It is suggested that to arrive at a common core, linguistic semantics must be understood as studying through syntax mobile agent's representing, tracking and coping with change and no change. Semantics of actions can be conceived the same way, but through plans instead of syntax. The key point is the following: Sequencing itself, of words and action sequences, brings in more structural interpretation to the sequence than which is immediately evident from the sequents themselves. Mobile sequencers can be understood as subjects structuring reporting, understanding and keeping track of change and no change. The idea invites rethinking of the notion of category, both in language and in planning. Understanding understanding change by mobile agents is suggested to be about human extended practice, not extended-human practice. That's why linguistics is as important as computer science in the synthesis. It must rely on representational history of acts, thoughts and expressions, personal and public, crosscutting overtness and covertness of these phenomena. It has implication for anthropology in the extended practice, which is covered briefly.
Goal Recognition via Linear Programming
Meneguzzi, Felipe, Santos, Luísa R. de A., Pereira, Ramon Fraga, Pereira, André G.
Goal Recognition is the task by which an observer aims to discern the goals that correspond to plans that comply with the perceived behavior of subject agents given as a sequence of observations. Research on Goal Recognition as Planning encompasses reasoning about the model of a planning task, the observations, and the goals using planning techniques, resulting in very efficient recognition approaches. In this article, we design novel recognition approaches that rely on the Operator-Counting framework, proposing new constraints, and analyze their constraints' properties both theoretically and empirically. The Operator-Counting framework is a technique that efficiently computes heuristic estimates of cost-to-goal using Integer/Linear Programming (IP/LP). In the realm of theory, we prove that the new constraints provide lower bounds on the cost of plans that comply with observations. We also provide an extensive empirical evaluation to assess how the new constraints improve the quality of the solution, and we found that they are especially informed in deciding which goals are unlikely to be part of the solution. Our novel recognition approaches have two pivotal advantages: first, they employ new IP/LP constraints for efficiently recognizing goals; second, we show how the new IP/LP constraints can improve the recognition of goals under both partial and noisy observability.